Internet Protocol (IP)
Internet Protocol
The Internet Protocol (IP) is the principal communications protocol in the internet protocol suite for relaying datagram across network boundaries. Its routing function enables internetworking, and essentially establishes the Internet.
IP has the task of delivering packets from the source host to the destination host to the solely based on the OP addresses in the packet headers. For this purpose, IP defines packet structures that encapsulate the data to be delivered. It also defines addressing methods that are used to label the datagram with source and destination information.
Historically, IP was the connectionless datagram service in the original Transmission Control Program introduced by Vint Cerf and Bob kahn in 1974; the other being the connection-oriented Transmission Control Protocol (TCP). The Internet protocol suite is therefore often referred to as TCP/IP.
Function
The Internet Protocol is responsible for addressing hosts andfor routing datagrams (packets) from a source host to a destination host across one or more IP networks. For this purpose, the Internet Protocol defines the format of packets and provides an addressing system that has two functions: Identifying hosts and providing a logical location service.
- Datagram construction: Each datagram has two components: a header and a payload. The IP header is tagged with the source IP address, the destination IP address, and other meta-data needed to route and deliver the datagram. The payload is the data that is transported. This method of nesting the data payload in a packet with a header is called encapsulation.
- IP addressing and routing: IP addressing entails the assignment of IP addresses and associated parameters to host interfaces. The address space is divided into networks and subnetworks, involving the designation of network or routing prefixes. IP routing is performed by all hosts, as well as routers, whose main function is to transport packets across network boundaries. Routers communicate with one another viaspecially designed routing protocols, either interior gateway protocols or exterior gateway protocols, as needed for the topology of the network.
IP routing is also common in local networks. For example, many Ethernet switches support IP multicast operations. These switches use IP addresses and Internet Group Management Protocol to control multicast routing but use MAC addresses for the actual routing.
Link capacity and capability
The dynamic nature of the Internet and the diversity of its components provide no guarantee that any particular path is actually capable of, or suitable for, performing the data transmission requested, even if the path is available and reliable. One of the technical constraints is the size of data packets allowed on a given link. An application must assure that it uses proper transmission characteristics. Some of this responsibility lies also in the upper layer protocols. Facilities exist to examine the maximum transmission unit(MTU) size of the local link and Path MTU Discovery can be used for the entire projected path the destination. The IPv4 internetworking layer has the capability to automatically fragment the original datagram into smaller units for transmission. In this case, IP provides re-ordering of fragments delivered out of order.
The Transmission Control Protocol (TCP) is an example of a protocol that adjusts its segment size to be smaller than the MTU. The User Datagram Protocol (UDP) and the Internet Control Message Protocol (ICMP) disregard MTU size, thereby forcing IP to fragment oversized datagrams.
From: https://en.wikipedia.org/wiki/Internet_Protocol