Wireless Sensor Network (WSN)
Wireless sensor network
Wireless sensor network (WSN), sometimes called wireless sensor and actuator network (WSAN), are spatially distributed autonomous sensors to monitor physical or environmental conditions, such as temperature, sound, pressure etc. and to cooperatively pass their data through the network to a main location. The more modern networks are bi-directional, also enabling control of sensor activity. The development of wireless sensor networks was motivated by military applications such as battlefield surveillance; today such networks are used in many industrial and consumer applications, such as industrial process monitoring and control, machine health monitoring, and soon.
The WSN is built of “nodes” – from a few to several hundreds or even thousands, where each node is connected to one (or sometimes several) sensors. Each such sensor network node has typically several parts: a radio transceiver with an internal antenna or connection to an external antenna, a micro controller, an electronic circuit for interfacing with the sensors and an energy source, usually a battery or an embedded from of energy harvesting. A sensor node might vary in size from that of a shoebox down to the size of a grain of dust, although functioning “motos” of genuine microscopic dimensions have yet to be created.
Application
Area monitoring
Area monitoring is a common application of WSNs. In area monitoring, the WSN is deployed over a region where some phenomenon is to be monitored. A military example is the use of sensors detect enemy intrusion; a civilian example is the geo-fencing of gas or oil pipeline.
Health care monitoring
The medical applications can be of two types: wearable and implanted. Wearable devices are used on the body surface of a human or just at close proximity of the user. The implantable medical devices are those that are inserted inside human body. There are many other applications too e.g. body position measurement and location of the person, overall monitoring of ill patients in hospitals and at homes. Body-area networks can collect information about an individual’s health, fitness, and energy expenditure.
Environmental/ Earthsensing
There are many applications in monitoring environmental parameters, examples of which are given below. They share the extra challenges of harsh environments and reduced power supply.