Transmission Control Protocol (TCP)
Transmission Control Protocol
The Transmission Control Protocol (TCP) is a core protocol of the Internet protocol suite. It originated in the initial network implementation in which it complemented the Internet Protocol (IP). Therefore, the entries suite is commonly referred to as TCP/IP. TCP provides reliable, ordered, and error-checked delivery of a stream of octets between applications running on hosts communicating over an IP network. Major Internet applications such as the World Wide Web, email, remote administration and file transfer relyon TCP. Applications that do not require reliable data stream service may use the User Datagram Protocol (UDP), which provides a connectionless datagram service that emphasizes reduced latency over reliability.
Network function
The Transmission Control Protocol provides a communication service at an intermediate level between an application programand the Internet Protocol. It provides host-to-host connectivity at the Transport Layer of the Internet model. An application does not need to know the particular mechanisms for sending data via a link to another host, such as the required packet fragmentation on the transmission medium. At the transport layer, the protocol handles allhandshaking and transmission details and presents an abstraction of the network connection to the application.
At the lower levels of the protocol stack, due to network congestion, traffic load balancing, or other unpredictable network behavior, IP packets may be lost, duplicated, or delivered out of order. TCP detects these problems, requests retransmission of lost data, rearranges out-of-order data, and even helps minimize network congestion to reduce the occurrence of the other problems. If the data still remains undelivered, its source is notified of this failure. Once the TCP receiver has reassembled the sequence of octets originally transmitted, it passes them to the receiving application. Thus, TCP abstracts the application’s communication from the underlying networking details.
TCP is utilized extensively by many popular applications carried on the Internet, including the World Wide Web (WWW), E-mail, File Transfer Protocol, Secure Shell, peer-to-peer file sharing, and many streaming media applications.
TCP is optimized for accurate delivery rather than timely delivery, and therefore, TCP sometimes incurs relatively long delays (on the order of seconds) while waiting for out-of-order messages or retransmissions of lost messages. It is not particularly suitable for real-time applications such as Voice over IP. For such applications, protocols like the Real-time Transport Protocol (RTP) running over the User Datagram Protocol (UDP) are usually recommended instead.
TCP is a reliable stream delivery service which guarantees that all bytes received will be identical with bytes sent and in the correct order. Since packet transfer over many networks is not reliable, a technique known as positive acknowledgment with retransmission is used to guarantee reliability of packet transfers. This fundamental technique requiresthe receiver to respond with an acknowledgment message as it receives the data. The sender keeps a record of each packet it sends. The sender also maintains a timer from when the packet was sent, and retransmits a packet if the timer expires before the message has been acknowledged. The timer is needed in case a packet gets lost or corrupted.
While IP handles actual delivery of the data, TCP keeps track of the individual units of data transmission, called segment that a message is divided into for efficient routing through the network. For example, when an HTML file is sent from a web server, the TCP software layer of that server divides the sequence of octets of the file into segments and forwards them individually to the IP software layer (Internet Layer). The Internet Layer encapsulates each TCP segment into an IP packet by adding a header that includes (among other data) the destination IP address. When the client program on the destination computer receives them, the TCP layer (Transport Layer) reassembles the individual segments, and ensures they are correctly ordered and error free a sit streams them to an application.
From: https://en.wikipedia.org/wiki/Transmission_Control_Protocol